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1. Abstract  

The present article explores the treatment of distributivity-like properties in some texts of the 

medieval Euclidean tradition. It starts with an overview of propositions in the Elements that, 

retrospectively seen, embody treatments of distributivity-related properties of multiplication 

over addition or subtraction. The main sections of the article discuss significant changes 

underwent by these basic conceptions in some influential medieval mathematical treatises, 

and the concomitant changes arising in the treatment of distributivity. The texts discussed 

comprise contributions by al-Nayrīzī, Abu Kāmil, the Liber Mahameleth, Fibonacci, Jordanus 

Nemorarius, Campanus de Novara, and Gersonides. The perspective afforded by the use of 

distributivity in its various manifestations gives rise to some additional insights concerning 

medieval attitudes towards the questions of what are numbers, what are their basic defining 

properties, and what is the right way to provide clear foundations for arithmetic as a solid 

mathematical field of knowledge.   
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2. Introduction 

In the present article I analyze the relationship between geometry and arithmetic in 

the medieval Euclidean traditions, as seen from the perspective of “distributivity-like” 

situations arising in various kinds of texts. My analysis here is best seen as 

complementary to a previous one, where I discussed the ways in which results from 

Book II of Euclid’s Elements were treated by medieval authors, commentators and 

translators. (Corry 2013; hereafter referred as [LC1]). I started there by analyzing 

Euclid’s own version of Book II, while fully endorsing the criticism put forward in 

(Unguru 1975) vis-à-vis the so-called “geometric algebra” interpretation of Greek 

mathematics. At the same time, however, I stressed the inadequacy of an unqualified 

use of those terms (geometry, arithmetic, algebra) as if they referred to bodies of 

knowledge that are easily recognizable in ahistorical terms, and traces of which we 

may either clearly find or fail to find in any given ancient text. To the contrary, I 

discussed the ways in which new kinds of ideas gradually appeared in the medieval 

versions of Book II and that transformed not only the formulations and the proofs of 

the propositions, but also the very borderlines and interactions among mathematical 

disciplinary matrices.  

“Distributivity-like” properties of multiplication over addition appear in interesting 

ways in medieval texts and as such they deserve a focused treatment. However, I do 

not mean to imply in my account below that, in any of the texts discussed here, we 

find a general, clearly formulated idea of “distributivity” as a fundamental, widely 

acknowledged, kind of property underlying the relationship between two basic and 

also well-defined operations, “product” and “addition”, and for which there is are 

specific manifestations in different contexts. The reader should keep this important 
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remark in mind, and understand their use in their own, ever-changing historical and 

disciplinary contexts.  

The ideas discussed here in relation with “distributivity-like” properties developed 

and consolidated as part of a long common process of interaction involving various 

kinds of ideas: product, addition, number, magnitudes. I think that it is historically 

rewarding to look at these earlier developments from a common perspective that 

involves a broad idea of “distributive-like” properties. Accordingly, then, the term is 

used here as a general, non-essentialist label that allows a common reference to 

various kinds of results that bear important similarities, rather than as an assertion that 

this was a clearly conceived, general idea specifically applied in particular cases. 

I shall be referring here only to medieval texts already discussed in [LC1]. Hence I 

will focus only on the mathematical issues directly connected with distributivity-like 

properties themselves. I shall not repeat here the historical descriptions and broader 

contextual considerations already discussed in [LC1]. Those are highly important 

issues and they are also relevant to some of the questions discussed here. The 

interested reader is referred to [LC1] for further details.  

In the first part of the article I give a preliminary overview of some propositions of 

Euclid’s Elements that, retrospectively seen, embody results that we can associate 

nowadays with a more general idea of distributivity. This overview is not intended as 

a detailed historical analysis of a general concept of distributivity that we can 

putatively attribute to Euclid. Nor do I wish to analyze here the actual, underlying 

conceptions behind Euclid’s uses of additions and products of numbers or of 

magnitudes, and certainly not to elucidate questions related to their historical roots. 

Rather, my intention is just to map out and to cursorily discuss a specific set of 

Euclidean propositions from books II, V, and VII, that, later on, medieval authors 
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referred to or relied upon in their own works, when discussing the role of 

distributivity-like rules. A main focus of interest will concern the way in which results 

and arguments that in Euclid’s Elements appear in the clearly separate contexts of 

numbers, magnitudes and proportions, started to appear in medieval texts 

intermingled with one other.  

The medieval texts discussed in the main section of the article comprise contributions 

by al-Nayrīzī, Abu Kāmil, the Liber Mahameleth, Fibonacci, Jordanus Nemorarius, 

Campanus de Novara, and Gersonides. The prism of distributivity provides some 

interesting insights into the medieval conceptions of what are numbers, what are their 

basic defining properties, and what is the correct way to provide a solid foundation for 

this mathematical discipline. 

Throughout the text, I render in modern symbolic terms some of the results discussed. 

Unguru’s 1975 article targeted such renderings as part of his criticism of the 

“geometric algebra” interpretation. The fact that I have rendered some results 

symbolically is not meant to indicate that in my view this is the correct way to 

understand them in their historical setting. Moreover, besides this general disclaimer, 

which should apply to the entire article, I have added in some places indications about 

specific shortcomings of interpreting a given result symbolically. Still, in spite of 

these shortcomings the symbolic rendering sometimes serves as convenient shorthand 

to nail down a specific part in an argument or to cross-refer among results appearing 

the various texts. I stress once again that, in general, I am not using this symbolic 

rendering as an interpretation of what either Euclid or the other authors discussed had 

in mind when formulating these propositions.  

As a final, preliminary note, I call attention to the fact that, as in [LC1], I have 

followed the convention of writing some paragraphs using a different font.  This is 
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meant as an indication to the reader that these paragraphs comprise purely technical 

details of some of the proofs, and that they are intended as evidence in support of the 

general claims made in the corresponding sections. The paragraphs may be read with 

due technical attention, or they may be skipped at least temporarily without thereby 

missing the general line of argumentation. 

 

3. Distributivity-like Results in Euclid’s Elements 

To the extent that distributivity-like properties are discussed as an issue of inherent, 

focused interest in Euclid’s Elements, that happens in Book II. Inasmuch as we can 

consider rectangle formation as a kind of multiplication, and the concatenation of 

rectangles having one side of equal length as addition, the first four propositions of 

Book II can be said to embody distributivity-related ideas of the former over the latter 

Proposition II.1, as is well known, formulates the following general property:
1
  

II.1: If there are two straight lines, and one of them is cut into any number of 

segments whatever, then the rectangle contained by the two straight lines equals 

the sum of the rectangles contained by the uncut straight line and each of the 

segments. 

The main step in the argument of the proof relies on a proposition from Book I, I.34, 

while making reference to the following diagram, where in the rectangle BGHC, the 

side BG equals the given line A, and the line BC is divided into sub-segments:  

  

                                                 
1
 All the quotations of the Elements in this section, as well as the accompanying diagrams, are taken 

from (Heath 1956 [1908]). For an enlightening  discussion of the issues involved in the use of diagrams  

related to ancient Greek sources, see (Saito and Sidoli 2012). 
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Figure 1: Euclid’s Elements II.1 

The said proposition I.34 is used to assert that, since BK is by construction a 

rectangle, then DK equals BG and hence equals A. A repeated application of this 

argument allows concatenating the three resulting rectangles into a single, larger one, 

and thus to complete the proof.   

Propositions II.2-II.3 may be seen as particular cases of II.1: 

II.2: If a straight line is cut at random, then the sum of the rectangles 

contained by the whole and each of the segments equals the square on the 

whole. 

 

Figure 2: Euclid’s Elements II.2 

II.3: If a straight line is cut at random, then the rectangle contained by the 

whole and one of the segments equals the sum of the rectangle contained by 

the segments and the square on the aforesaid segment. 
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Figure 3: Euclid’s Elements II.3 

In spite of their appearance as particular cases of II.1, Euclid did not prove them by 

straightforward application of the latter. Rather, the two proofs he offered essentially 

recapitulate the argument of II.1, but now applied to the particular cases in point. This 

reflects a more general feature typical of the proofs of the first ten propositions of 

Book II, namely that none of them relies on a previous one of the same book. Rather 

they are all proved by directly relying on propositions of Book I alone. In particular 

this is also the case of proposition II.4, which can as well be seen—mathematically 

speaking—as a particular application of II.1. It embodies a distributivity-like property 

of square-formation over division of a line into two parts, which—like the previous 

two propositions—is not proved in the Elements based on II.1, but rather by direct 

application of I.34. Its formulation and diagram are as follows:    

II.4: If a line is cut at random, then the square on the whole is equal to the 

squares on the segments and twice the rectangle contained by the segments.  
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Figure 4: Euclid’s Elements II.4 

 

 

Book V 

The first six propositions of Book V can be seen as a self-contained, comprehensive 

discussion of results concerning equimultiplicity of continuous magnitudes (Acerbi 

2003). As we will see below, medieval treatises where distributivity-like properties 

are discussed do mix arguments taken from Book II with those taken from these 

specific propositions of Book V. For this reason I have chosen to include them here in 

this preliminary discussion. Within the Elements, these propositions provide basic 

results that are used to develop in full the Eudoxian theory of ratios and proportions 

later in the book. Ratios and proportions as such, however, are not yet mentioned in 

these six propositions. They deal only with magnitudes and their multiplicities.  

These are the enunciations of the six propositions:  

V.1: If there be any number of magnitudes whatever which are, respectively, 

equimultiples of any magnitude equal in multitude, then, whatever multiple 

one of the magnitude is of one, that multiple also will all be of all. 

V.2: If a first magnitude be the same multiple of a second that a third is of a 

fourth, and a fifth also be the same multiple of the second that a sixth is of the 
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fourth, the sum of the first and fifth will also be the same multiple of the 

second that the sum of the third and sixth is of the fourth. 

V.3: If a first magnitude be the same multiple of a second that a third is of a 

fourth, and if equimultiples be taken of the first and third, then also ex aequali 

the magnitudes taken will be equimultiples respectively, the one of the second 

and the other of the fourth. 

V.4: If a first magnitude have to a second the same ratio as a third to a fourth, 

any equimultiples whatever of the first and third will also have the same ratio 

to any equimultiples whatever of the second and fourth respectively, taken in 

corresponding order. 

V.5: If a magnitude be the same multiple of a magnitude that a part subtracted 

is of a part subtracted, the remainder will also be the same multiple of the 

remainder that the whole is of the whole. 

V.6: If two magnitudes be equimultiples of two magnitudes, and any 

magnitudes subtracted from them are equimultiples of the same, the 

remainders also are either equal to the same or equimultiples of them. 

 

Heath’ symbolical rendering of these proportions sets the stage for possibly 

interpreting them as general statements of distributivity laws. It involves the following 

expressions:  

V.1:   m·a + m·b + m·c + … = m·(a + b + c + …). 

V.2:   m·a + n·a is the same multiple of a as m·b + n·b is of b.  

Further, says Heath, from the proof we learn that m·a + n·a + p·a + … 

=  (m + n + p + …)·a. 
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V.3:   (m·n)·a = m·(n·a). 

V.4:   If a:b :: c:d,  then  m·a:n·b :: m·c:n·d . 

V.5:   m·a - m·b = m·(a - b). 

V.6:   If  n < m,  m·a - n·a is the same multiple of a as m·b - n·b is of b. 

But beyond the general historiographical issues raised by the use of this kind of 

symbolic translation, in this particular case, Heath’s rendering is potentially 

misleading in a more specific sense. Indeed, the “multiple” of a given magnitude M is 

not, for Euclid, the outcome, n·M, of a binary operation, namely, multiplying a given 

number n by the magnitude M. Nor is it the result, M + M + M + M + … + M, of 

successive steps of binary additions of the magnitude to itself n times. Rather, it is 

more of an “accumulation” or of a “gathering together” of a multitude of instances of 

the said magnitude: M, M, M, M, … M. Also, V.2-V.3 above involve the particular 

difficulty that nothing like the coefficient multipliers m,n do appear in Euclid’s text 

(Taisbak 1971, 65).  

Heath’s rendering also does not reflect (except in the case of V.4) the “if … then” 

style of formulation of the propositions. Thus, a symbolic rendering that would remain 

closer to Euclid in at least this formal and important respect could be the following: 

V.1:   If a = m ·a, b = m ·b, c = m ·c,… then  a + b + c … = m ·(a + b + c …) 

V.2:   If  a = m·b , c = m·d and e = n·b ,  f = n·d,  then, while a + e = p·b, we also 

have c + f = p·d.  In this symbolic rendering one sees that p = m + n. 

V.3:   If  a = m·b , c = m·d and e = n·a ,  f = n·b,  then, e = p·a ,  f = p·d.  In this 

symbolic rendering one sees that p = m·n. 

V.4:   If a:b :: c:d,  then  m·a:n·b :: m·c:n·d . 

V.5:   If  a = m·b , c = m·d,  then a – c = m·(b - d). 
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V.6:   If  a = m·b , c = m·d and e = n·b ,  f = n·d,  then while a - e = p·b, we also 

have c - f = p·d. In this symbolic rendering one sees that p = m - n.  

Notice a point of particular interest in this regard concerning V.6. Euclid mentions 

separately the possibility that the remainders be “equal to the same”. Symbolically 

this corresponds to the case m = n + 1 and there is no need to speak about it 

separately. But for Euclid, this is indeed a separate case, namely one in which we do 

not have a multitude of instances of the magnitude but just one instance. Hence the 

need to mention it separately.  

 

The proofs of the first six propositions in Book V are based on various way of 

counting the multitudes of the magnitudes involved in each case. Of special interest 

for us are the proofs of V.1 and V.2 because they will resurface in modified ways in 

the medieval texts discussed below. As for V.1, the proof is accompanied by the 

following diagram: 

 

Figure 5: Euclid’s Elements V.1 

Here AB and CD represent equimultiples of E, F respectively. The proposition states 

that AB, CD taken together is that same equimultiple of E, F taken together.  

The proof follows closely the diagram and explains that AB is divided into (two) 

lesser magnitudes AG, GB (each equal to E) while CD is divided into the same 

number (two) of lesser magnitudes CH, DH (each equal to F). Now, the lesser 

magnitudes of the two kinds are joined into pairs (each equal to E, F) that can be 

used to measure the sum AB, CD. And the amount of such pairs turns out to be 
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equal to the times (two) that each of the two lesser magnitudes measured both AB 

and CD at the beginning of the proof. In Euclid’s words: “since AG is equal to E 

and CH to F, therefore AG is equal to E, and AG, CH to E, F. For the same reason 

GB is equal to E, and GB, HD to E, F. Therefore as many magnitudes as there are 

in AB equal to E, so many also are there in AB, CD, equal to E, F”.  

Again for ease of reference below, rendering the argument of the proof in modern 

symbols, while at the same time generalizing for more than two summands for the 

first and the second magnitudes, yield the following: 

(a.1) AB = E + E + E + … +E  (n times) 

(a.2) CD = F + F + F + … +F  (n times) 

(a.3) AB +CD= (E + E + E + … + E)  + (F + F + F + … + F )  

(a.4) AB +CD = (E +F) +(E +F) + … + (E +F)  (n times) 

Euclid lacked a flexible symbolic language that could allow him to formulate the 

proof in all of its generality. Still, the generality of the argument seems to be 

compromised neither in terms of the multiplicity involved (“two” in the proof) nor of 

the number of magnitudes that added (here: E and F). In this particular sense, the 

generality implied in the symbolic rendering V.1 does not seem to go beyond what 

Euclid stated in the enunciation and the proved in the proof. His main trick lies in 

pairing the measuring magnitudes and then counting the ensuing pairs.  

Let us consider now the proof of V.2, whose diagram is the following:  
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Figure 6: Euclid’s Elements V.2 

Here AB is the same multiple of C that DE is of F, and likewise, BG is the same 

multiple of C that EH is of F. The proposition states that AG is the same multiple of C 

that DH is of F. Notice that unlike in V.1, C and F need not be magnitudes of the 

same kind, and the proposition does not involve in any way gathering together the 

first or second magnitudes with the third or fourth, respectively. Rather, the 

proposition only compares two separate relationships between pairs, each pair 

comprising magnitudes of the same kind.  

The starting point of the proof is that as many magnitudes are in AB that are equal 

to C, so many are also in DE that are equal to F (and the same goes for BG and 

EH). It is a nice feat, I think, that Euclid attempted to infuse some kind of 

generality to the argument by taking three and two as the multiplicities (rather 

than, for example, two and two). Now the two multiplicities are gathered together 

with each other separately and as a result “as many as there are in the whole AG 

equal to C, so many are there in the whole DH equal to F.”  

The cases involving subtraction are considered in V.5 and V.6, which are parallel to 

V.1 and V.2. The proofs of the second pair are somewhat different from those of their 

counterparts in the first one. One point of interest concerning V.5 can be mentioned 

with reference to the accompanying diagram, which is the following: 
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Figure 7: Euclid’s Elements V.5 

Here the magnitude AB is the same multiple of CD than AE is of CF. AE is 

subtracted from AB to obtain EB, while CF is subtracted from CD to obtain CF. The 

proposition states that the remainder EB is also the same multiple of FD as AB is 

of CD. The segment CG, not mentioned in the enunciation, is constructed as part of 

the proof, so that EB be the same multiple of CG that AE is of CF. Symbolically: if 

AE = n·CF, then EB = n·CG.  

The interesting point in the proof is Euclid’s assumption of the existence of CG. 

Indeed this is tantamount to assuming that given any magnitude, here EB, we can 

divide it into as many equal parts as we wish. In Euclid’s own diagram, for instance, 

FD is a third of AE, so that CG needs to be made a third of EB. This would seem to 

present no problem if we were dealing with segments, as in the diagram, but in fact it 

is only in VI.9, that Euclid proves that such a fourth line exists. In the case of areas or 

volumes, it would seem more difficult to figure out how this fourth magnitude is 

found. And, much worse, in the case of angles or arcs, it may turn out to be 

impossible (or at least impossible with rule-and-compass methods). In his comments 

to this proposition, Heath mentioned alternative proofs that were suggested by later 

authors and that bypass this problem (Heath 1956 [1908], Vol. 2, 146. See also 

Mueller 1981, 122).   

A further, interesting point to notice in relation with these six propositions of Book V 

is that their diagrams are all half way between the geometric (typical of proofs in 

Book II), and the purely arithmetic (such as in Book VII). Thus, on the one hand, the 
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magnitudes are represented in the diagrams by lines, while they are meant as 

magnitudes of any kind, including areas, angles or volumes (but not numbers). On the 

other hand, these lines are not parts of constructions (like in the geometric proofs) but 

are just indicative of the magnitudes involved. As in the arithmetic type of proofs, the 

only way in which they are manipulated upon is that they are added to, or subtracted 

from, each other (Mueller 1981, 122). Again, this will appear as an important point 

below, because, as it is well known, Book VII develops a theory of proportions for 

natural numbers, which runs parallel to that of Book V, and in some medieval texts 

we find discussions about the need to follow Euclid in maintaining this separation.  

 

Book VII 

Also in Book VII of the Elements we find propositions that involve distributivity-like 

properties. They focus on the question of “being a part” or of “being parts” of a given 

number and, as in Book V, they explore the issue equimultiplicity. We have two pairs 

of propositions, VII.5-VII.6 and VII.7-VII.8, that appear as parallel, respectively, to 

V.1 and V.5. They are formulated as follows:  

VII. 5: If a number be a part of a number, and another be the same part of another, 

the sum will also be the same part of the sum that the one is of the one. 

VII. 6: If a number be parts of a number, and another be the same parts of 

another, the sum will also be the same parts of the sum that the one is of the one. 

VII. 7: If a number be that part of a number, which a number subtracted is of a 

number subtracted, the remainder will also be the same part of the remainder that 

the whole is of the whole.  

VII. 8: If a number be the same parts of a number that a number subtracted is of a 
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number subtracted, the remainder will also be the same parts of the remainder that 

the whole is of the whole.  

Also in this case, the symbolical rendering suggested by Heath stresses very much 

a possible retrospective interpretation of these propositions as statements of 

distributivity of multiplication of numbers over their addition:
2
  

VII.5:  
 

 
 a + 

 

 
 b =  

 

 
 (a+b)    

  VII.6:  
 

 
 a + 

 

 
 b =  

 

 
 (a+b) 

VII.7:  
 

 
 a -  

 

 
 b =  

 

 
 (a-b)  

  VII.8:  
 

 
 a - 

 

 
 b =  

 

 
 (a-b) 

But this rendering raises, beyond the historiographical issues already mentioned for 

any symbolic rendering of this kind, the additional problem that in Euclid’s arithmetic 

there is nothing like the fraction  
 
 . Perhaps a closer symbolic approximation—not 

without its own limitations as a faithful rendering of Euclid—could be the following: 

VII.5: If a = n·b and c = n·d, then a + c = n·(b +d).   

VII.6: If m·a = n·b and m·c = n·d, then m·(a +c) = n·(b +d). 

VII.7: If a = n·b and c = n·d, then a – c = n·(b - d).  

VII.8: If m·a = n·b and m·c = n·d, then m·(a - c) = n·(b - d). 

In strict mathematical terms this latter rendering is equivalent to Heath’s but it 

expresses more closely the spirit of the original. For one thing, contrary to what is 

                                                 
2
 A similar, though not identical, rendering appears in (Itard 1961, 90-97). (Taisbak 1971, 40 ff.) gives 

a completely different kind of symbolic rendering, conceived with the specific purpose in mind of 

avoiding any possible historical inaccuracy incurred by the use of modern algebraic symbolism. It is 

well beyond the intended scope of the present article to follow any kind of symbolic approach close to 

that of Taisbak. Still, it is interesting that, following his own point of view, Taisbak states explicitly (p. 

43) that VII.5 and VII.6 “can be interpreted as the Distributive Law”.  
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the case with Heath’s rendering, this one retains the “if .. then” format of Euclid’s 

original formulation. For another thing, in Heath’s rendering, the four statements 

are just different instances of the same general rule of distributivity. This raises 

the question of why Euclid would have chosen to state and prove them as separate 

results. Obviously, the straightforward equivalence between the four becomes 

possible only when written retrospectively in this way. This misleading 

interpretation is not fully absent from the alternative rendering I just suggested, 

but it is at least somehow mitigated. I think it does provide a justification for 

seeing them as part of a family of related, distributive-like properties, without 

thereby having to assume the existence of a clear-cut, general idea of 

distributivity.  

 

Euclid’s four proofs are quite similar to each other and they are based on a rather 

straightforward counting of units. We can see the main argument through the example 

of VII.5, which is accompanied by the following diagram: 

 

Figure 8: Euclid’s Elements VII.5 

Here A is a part of BC, and D is the same part of another EF that A is of BC. The 

proposition then states that the sum of A, D is also the same part of the sum  BC, EF 
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as A is of BC. The core of the argument recapitulates that of V.1.
3
  

Since we shall need this below, it is pertinent to say also a word about the proof of 

VII.6, which is accompanied by the following diagram: 

 

Figure 9: Euclid’s Elements VII.6 

In the proof, AC, GB represent parts of C that taken together make the number AB. 

Likewise, DH, HE represent parts of F that taken together make the number DE. 

As many parts of C as taken together make AB so many parts of F taken together 

make DE. Hence, one can apply VII.5 and conclude that “whatever part AG is of C, 

the same part also is the sum of AG, DH of the sum of C, F.” The same is then 

concluded for GB vis-à-vis C, and for the sum GB, HE vis-à-vis the sum of C,F. 

And finally, “whatever parts AB is of C, the same parts also is the sum of AB, DE 

of the sum of C, F.” 

Notice that for lack of a more flexible language, Euclid took two parts in the proof 

to mean “an arbitrary number of parts.” In the argument, he referred to each of 

these parts separately, AG and GB, and then moved to the conclusion for the sum. 

But he did not say explicitly that this conclusion requires that the procedure can 

indeed be validly applied to the case in which three, four, or any number of parts 

of C other than two is added. It is quite clear, nevertheless, that the generality of 

                                                 
3
 According to (Taisbak 1971, 41), the details of this proof indicate that Euclid implicitly takes for 

granted the associative and commutative laws for the addition of numbers, “implied as they are in his 

definitions of number”.  



Corry  Euclid – Distributivity 

- 19   -  

 

the argument, in this regard, is not compromised. Notice also that it is not known 

how many of parts such as AG taken together make C, but we do know that as 

many as they are, F is made of as many parts, each being like DH. Obviously then, 

the generality of this part of the argument is not compromised in any sense, 

because we do not even need to now into how many parts C or F are divided.  

Referring to the symbolic rendering in VII.6, 
 

 
 a + 

 

 
 b =  

 

 
 (a+b), we can say that 

Euclid's argument is clearly valid for any value of n, because n is actually absent in 

the argument. At the same time, the argument is presented in detail only for m = 2, 

and it is left implicit that it can be generalized to any value of m, though it is not 

obvious how this could be done in the language typically available to Euclid.
4
     

The proofs of VII.7-VII.8 amount to not much than similar counting of units as in the 

previous two propositions, and both of them reduce their argument to a situation 

where VII.5 can be directly applied.  

 

Using Distributivity-Like Properties in the Elements 

Let us take a look now at the ways in which the various distributivity-like 

propositions discussed above are put to use in the Elements. It is interesting to notice 

that, taken together, they are used in crucial places for many more elaborate 

propositions in the treatise. Starting with Book II, the following diagram shows how 

the first ten propositions are used: 

                                                 
4
 See (Itard 1961, 93-97) for what he considers to be a problematic aspect of Euclid’s proofs for VII.6 

and VII.8.  See (Taisbak 1971, 42-48) for additional, but quite different kinds of comments.  
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Figure 10: Deductive dependence of Distributive-like results in Euclid’s Elements  

As it is well know, and as shown in the diagram, a main application of the 

propositions appearing in the first part of the book is in the proofs of II.11 to II.14. 

The latter embody results that are mathematically significant in themselves (e.g., 

cutting a segment in mean and extreme ration in II.11 and constructing a square equal 

to a given rectilinear figure in II.14). These two also have important applications in 

later parts of the Elements (such as in IV.10, which is needed for constructing the 

regular pentagon, and which relies on II.11). But from the diagram, one also readily 

notices that Book X appears as a main focus of application of these ten results, and 

specifically of II.4-II.9. Taken together with the applications in proofs in Books III, 

IV, XII XIII, we can say that these distributivity-like properties of area-formation do 

play an important role in the general economy of Euclid’s treatise. A case of special 

interest for our discussion here is that of IX.15, in which proof, arithmetic versions of 

II.3-II.4 are used. I shall further comment on this issue right below. 

As already pointed out, Euclid’s basic approach in developing the first ten results of 

Book II was to prove each proposition on the basis of results of Book I alone. 

Technically speaking, however, it would be enough to prove II.1, and then all the rest 

could be proved by relying on this one proposition alone and without further recourse 
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to Book I. This is, as we shall see below, the approach that Heron followed in his 

version of Book II. One can only speculate about the reasons behind Euclid’s specific 

choice. Together with the issue of “geometric algebra” and the application of the 

propositions of Book II to prove additional propositions in the treatise, historians have 

discussed the possible significance of the approach followed by Euclid in his proofs. 

Such discussions concern an assessment of the role of Book II as a whole—and of 

some of its individual propositions separately—within the general economy of the 

Elements. Ian Mueller, for instance, found the evidence inconclusive to come up with 

such an assessment (Mueller 1981, 301-302): 

If one accepts II,11-14 as a goal of book II, one has an explanation for the 

presence of II,4-7, which are used in their proofs. … As far as I am able to 

determine, there is nothing in the Elements themselves which makes the 

algebraic interpretation of these propositions more natural than the 

straightforward geometric one. On the other hand, the minimal use of II,1-3, 8-

10, together with the generally loose connection between book II and books X 

and XIII, makes it difficult to feel confident about book II. … What unites 

book II is the methods employed: the addition and subtraction of rectangles 

and squares to prove equalities and the construction of rectilinear areas 

satisfying given conditions. 1-3 and 8-10 are also applications of these 

methods; but why Euclid should choose to prove exactly those propositions 

does not seem to be explicable.  

Christian Marinus Taisbak, in turn (Taisbak 1993, 30), speculated about a possible 

explanation that builds on some pre-Euclidean, ancient arithmetic traditions. In those 

traditions, propositions similar to II.5, II.6, II.10 and II.11 appear in a natural way. 

Taisbak added that II.1 should be considered, under this view, to have been added by 
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Euclid himself as a generalization of other propositions presented in Book II. He 

regretted, moreover, that Euclid “did not tell us explicitly what is the meaning of it all, 

particularly what II.5 and II.6 are good for, although such knowledge is presupposed 

in Book X from prop. 17 onward.”         

Now, one may wonder to what extent, if at all, the medieval authors to be discussed 

below ever asked themselves historical questions of this kind or what was their view 

on issues related to these ones. We do know, as will be seen below, that they 

occasionally came up with their own alternative mathematical approach to the proofs 

and to the connection among the various propositions. But in order to complete the 

picture of this part of the discussion, it is also important to stress that in several places 

in the Elements we find proofs where distributivity-like properties of area formation 

over addition are implicit used without any explicit comment or further justification. 

The typical case in point is in the proof of I.47, where two rectangles with a common 

side are added to create a certain square (see also [LC1]). This can be seen in the 

diagram of the proof, which is the following: 

 

Figure 11: Euclid’s Elements I.47 

A crucial step in the proof is that  
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  Sq(BC) = R(BD,DL) + R(CE,LE),  

a step that is simply indicated with reference to the diagram. But this is precisely the 

kind of situation that is handled, and duly proved in II.1-II.3. How can we then 

explain that Euclid takes the step in Book I without further comments but finds it 

necessary to prove the same point in Book II? This issue has been discussed by Ken 

Saito (Saito 2004 [1985]), who called attention to the fact that the two rectangles 

added in the proof of I.47 are explicitly drawn (or “visible”) in the diagram. All 

rectangles appearing in the proofs of II.1-II.3, on the contrary, do not arise as part of 

an explicit geometric construction in the corresponding diagrams (Saito calls them 

“invisible”). Justification such as provided by II.1 is necessary, Saito convincingly 

argues, because the rectangle to which the statement refers is invisible. Moreover, the 

crucial point of the proofs of II.1-II.3 is that the “invisible” rectangles referred to in 

the proposition are made “visible”, so that this kind of “distributivity of area-

formation”, which is self-evident for “visible” rectangles, can be used.   

Seen from this perspective, the first ten propositions of Book II are lemmas that are 

introduced beforehand, in preparation for later use in specific geometric situations. In 

those situations, it is possible to invoke the lemma without having to explicitly show 

in the diagram the relevant construction, which thus remains “invisible”. We find a 

good example of this in XIII.10, which is the only place where II.2 is explicitly used. 

The proposition states than in an equilateral pentagon inscribed in a circle, the square 

on the side of the pentagon equals the sum of the squares on the sides of the hexagon 

and the decagon that are inscribed in the same circle. The diagram is the following: 
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Figure 12: Euclid’s Elements XIII.10 

The proof is relatively complicated and we do not need to see all its details here (but 

see Taisbak 1999). I just want to focus on the fact that one of the concluding steps of 

the proof requires that  

  Sq(BA) = R(AB,BN) + R(AB,AN).  

The step is justified on the basis of II.2, and thus the proof is completed without 

drawing any of these invisible figures explicitly. This also help explains why Euclid 

proved separately II.2-II.3, in spite of their appearance as no more than particular 

cases of II.1, because each of them needs to be ready for the specific situation in 

which it is going to be used (Saito 2004 [1985], 164).  

 

An additional focal point of interest that deserves special attention here is the proof of 

IX.15. Several stages of the argument rely on what can be seen as arithmetic versions 

of II.3 and II.4 (actually II.3 is not applied anywhere else in the Elements). We have 

seen that, because Euclid consistently adhered to the principle of separating realms 

throughout the treatise, separate versions are found of what can retrospectively be 

seen as similar distributivity-like results. Here, however, we have an interesting case 
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of transgressing that principle.
5
 The proposition in question is stated as follows: 

IX.15: If three numbers in continued proportion be the least of those which 

have the same ratio with them, any two whatever added together will be prime 

to the remaining number. 

The accompanying figure is the following: 

 

Figure 13: Euclid’s Elements IX.15 

Here A, B, C are the three given numbers in continued proportion. Proposition VIII.2 

warranties the existence of two numbers, DE, EF such that A = DE
2
; B = DE∙EF; and 

C = EF
2
. In addition, by VIII.22, DE, EF are mutually prime. Now, along the proof, 

Euclid considers several products involving DF, DE, EF and their squares. Using 

various propositions of Book VII (22, 24, 25), he can establish certain relations of 

mutual primality among them. But in other places he also needs to consider cases 

where the numbers and their squares are added to one another, and it so happens that 

in Books VII and VIII, there is only one proposition (VII.28) that handles cases of 

adding mutually prime numbers. Euclid indeed invokes this proposition in order to 

prove that DF is relatively prime to both DE and EF. But in the other stages in the 

proof he deals with additions not covered for VII.28, and that can be interpreted as 

arithmetic cases of the situation covered (for the geometric case) by II.3 and II.4. 

Thus, for instance: 

                                                 
5
 See (Mueller 1981, 108 ff.) for a broader discussion of Euclid’s use of geometric arguments and 

analogies in arithmetical contexts. For example, Mueller indicates (p. 108) that in Book X, Euclid 

proves two lemmatas while invoking an arithmetic analogue of II.6. 
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 The product of FD, DE is the square on DE together with the product of DE, 

EF.   

 The squares on DE, EF together with twice the product of DE, EF are equal to 

the square on DF. 

Now, in preparation for this proof, Euclid could have conceivably formulated and 

proved the purely arithmetic propositions needed here, but for some reason he 

declined to do so and preferred to deviate from his self-imposed, strict separation of 

domains. Again, we can only speculate about the reason for this choice, but it is 

interesting to mention that in the medieval texts discussed below we shall encounter 

an interesting twist to this peculiar situation. Al-Nayrīzī in the 10
th

 century, and then 

Campanus in the 13
th

 century, formulated a generalized version of IX.15 and added to 

it original “commentaries” most of which happen arithmetic versions of results from 

Book II. This is one of the most interesting issues that I discuss in detail below.  

 

Let us consider now the way in which the six propositions of Book V discussed above 

are used in the Elements. This is schematically represented in the following diagram: 
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Figure 14: Deductive dependence for distributive-like results in Euclid’s Elements  

In the lower dotted square I have indicated most, but not all, of the results that can be 

derived indirectly from the six propositions that interest us here. Still, the picture is 

quite clear and interesting. While V.1 and V.2 are used crucially in some of the later 

proofs in the book, V.3 is used only in the proof of V.4, whereas V.5, V.6 are not used 

at all. Also, the derivatives of V.1 and V.2 do play important roles in Books VI, X, 

XII and XIII.  

It is also pertinent to mention in this regard proposition V.24, which may be seen as 

expressing yet another kind of distributivity-like property of sorts. It reads as follows: 

V.24: If a first magnitude have to a second the same ratio as a third has to a 

fourth, and also a fifth have to the second the same ratio as a sixth to the 

fourth, the first and fifth added together will have to the second the same 

ration as the third and sixth have to the fourth. 

If we allow ourselves a symbolic rendering of this proposition then, we obtain the 

following: 
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V.24:   If a:c :: d:f, and b:c :: e:f, then  (a + b):c :: (d + e):f . 

It is important to notice that this proposition appears in the section of book V where 

Euclid dealt with “composition” of proportions. What I mean by this, are propositions 

such as V.17 or V.18, whose symbolic renderings are, respectively:  

V.17:   If a:b :: c:d, then  (a - b):b :: (d - e):f  

V.18:   If a:b :: c:d, then  (a + b):b :: (d + e):f . 

The proof of V.24 depends crucially on V.18, and it is noteworthy that in his well-

known edition of the Elements, Robert Simson (1687-1768) indicated that Euclid’s 

proof of V.24 can be easily modified to obtain, based on V.17, a result similar to that 

of V.24 but involving subtraction. This is something Euclid never did, but as we shall 

see below, there is at least one medieval text (Liber Mahameleth) where this was 

actually done. What will turn out to be even more interesting, however, is that in 

that text V.24 is taken to be the source of justification for this distributive-like 

property of the product. 

In the Elements there is only one other proposition whose proof relies on the main 

idea of V.24, but it does so with an interesting twist. This is proposition VI.31, which 

generalizes the Pythagorean theorem by constructing on the sides of a rectangular 

triangle, not squares but rather any three figures that are “similar and similarly 

described”. Euclid’s diagram for VI.31 is the following: 
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Figure 15: Euclid’s Elements VI.31 

In the proof, Euclid refers to non-specified geometric figures, and not necessarily to 

rectangles as in the figure. He shows separately that: 

(b.1) CB:BD :: (fig. on CB):(fig. on BA), and 

(b.2) BC:CD :: (fig. on BC):(fig. on CA) 

and from here he deduces that:  

(b.3) CB:(BD + CD) :: (fig. on CB):(sum of figs. on BA and AC). 

Completing this latter deduction requires something close to V.24, but not exactly 

the way the proposition is stated. Indeed, in V.24, it is the antecedents that are 

added in both ratios, and not as here in the proof of VII.31.    

 

Finally, we can take a look at the way in which the six propositions of Book VII 

discussed above are used in the Elements. This is schematically represented in the 

following diagram:  



Corry  Euclid – Distributivity 

- 30   -  

 

 

Figure 16: Deductive dependence for distributive-like results in Euclid’s Elements  

In this case we see very clearly that VII.5 (both directly and indirectly via other 

propositions) provides an important tool that is consistently used for proofs 

throughout the three arithmetic books of the Elements. One important case to mention 

is that of VII.15-16, which embody the commutativity of the product (and are 

themselves also used, of course, in the proofs of many other propositions). A second 

important case is that of VII.11-13, three propositions needed to prove X.35. This 

latter proposition—in conjunction with several other propositions of Book VII that 

derive from VII.1—allows Euclid proving IX.36. This is the famous proposition that, 

in modern terms can be understood as stating that if 2
p
 – 1 is a prime number, then 

(2
p
 – 1) 2

p-1
 is a perfect number. 

 

The above survey may be now summarized as follows: 

 Propositions involving distributivity-like properties appear in the Elements in 

three different realms (magnitudes, proportions and arithmetic), 

 in each of these realms various cases are treated separately,  
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 different underlying assumptions, both explicit and implicit, are used in the 

various proofs, and in the various realms, 

 distributivity-like results obtained in the separate realms are put to use in 

different ways in the overall economy of the Elements. 

Mathematicians of later historical periods, whose works I discuss below, read the 

Elements from a perspective that comprised changes in some of the basic underlying 

conceptions. These conceptions concerned the nature of numbers and continuous 

magnitudes, the relationship among these two different kinds of mathematical entities, 

and the way they were put to use in various mathematical situations. Among other 

things, the rather strict separation between the three realms characteristic of Euclid’s 

own approach, was revised and approached differently by the various authors. 

Moreover, when these mathematicians worked with positive numbers that included, 

beyond integers, also fractions and even irrational numbers, they could not directly 

rely on the canonical versions of those propositions that Euclid had proved in his 

arithmetical books. Book II above all, and to a lesser extent also Book V, provided 

many results that medieval mathematicians wanted to use in the arithmetic realm, 

which for them was broader than for Euclid. Their more flexible conception of 

number directly influenced, as we will see now, the ways in which distributivity-like 

results were used and justified, while some of the Euclidean propositions were 

themselves modified accordingly.  

  

4. Late Antiquity and Islamic Mathematics 

In this section I discuss al-Nayrīzī’s additions to the Elements that appear in the 

framework of his report on Heron’s Commentary. Al-Nayrīzī devoted a more focused 
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attention to distributivity-like results than Euclid had done. I also discuss briefly Abū 

Kāmil’s version of propositions from Book II.  

 

4.1. Heron and al-Nayrīzī  

Heron of Alexandria wrote a Commentary of the Elements at the end of the first 

century A.D. It contained alternative proofs for several propositions in Book II. In 

[LC1, 652-654] I contrasted the geometric approaches of Euclid and Heron in their 

respective proofs, and I described the former as “constructive” and the latter 

“operational”. These differences, however, do not seem to have affected Heron’s 

views on discrete and continuous magnitudes, and the way that they are kept 

separated throughout the various parts of the Elements.  

Heron’s ideas are known to us via al-Nayrīzī’s commentary to the Elements, dating 

from the early tenth century. This is one of the earliest such commentaries to be 

written in Arabic. Together with his report on Heron’s ideas, al-Nayrīzī also added 

numerical examples of his own that were meant to illustrate each proposition in Book 

II. The more flexible conception and use of numbers, typical of the Islamic tradition 

of which al-Nayrīzī was part, certainly helps explain his inclination to go in this 

direction. But it is important to stress that this kind of numerical interpretation could 

have hardly been accommodated within the specific approach followed in Euclid’s 

proofs that were, as I said, “constructive”. To the contrary, they found a more natural 

place within Heron’s because, while geometrical, they were “operational” [LC1, 661-

662].  

But al-Nayrīzī’s own contribution went much further than just illustrating the 

propositions of Book II with numerical examples: he also incorporated into the 

arithmetical books of the Elements fully arithmetic versions of some of the 
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propositions of Book II. He did this by adding a section with comments to Book IX. 

Again we can understand this move against the background of a more flexible 

conception of number that evolved in Islamicate mathematics, along a less rigid 

separation of discrete and continuous magnitudes. Less rigid, it must be stressed, but 

not altogether inexistent. This move, at any rate, had a direct, visible influence on 

later medieval treatises, and specifically on Jordanus and Campanus as we will see 

below. Some of the details of Heron’s and al-Nayrīzī’s proofs are worthy of further 

examination here.  

 

Heron asserted that II.1 is the only one among the fourteen propositions that “cannot 

be proved without drawing a total of two lines”. For the remaining thirteen 

propositions, he stated that “it is possible that they be demonstrated with the drawing 

of one sole line” (Curtze 1989, 89)
6
. There is no report on Heron’s argument for II.1, 

and we may assume that it added nothing to Euclid’s original. Al-Nayrīzī’s numerical 

example for II.1, in turn, is embodied in the following diagram (p. 88):
 7

 

 

Figure 17: Al-Nayrīzī’s diagram for Euclid’s Elements II.1 

                                                 
6
 Unless otherwise stated, translations from Latin, Hebrew, or German are mine.  

7
 In his commentaries to the text of Al-Nayrīzī (Curtze 1898), Curtze added algebraic renderings to 

each proposition.   
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Al-Nayrīzī also reported on Heron’s proofs for the other propositions in Book II. The 

most important feature of these proofs is that, unlike Euclid’s original proofs, they do 

not rely on results of Book I. Rather, they rely first on II.1, and then on those other 

propositions from the same Book II that Heron gradually proved as he went. Thus, for 

instance, Propositions II.2-II.3 appear here naturally as particular cases of II.1.  Then, 

II.4 appears as directly derivable from II.1, relying also on the other two. We can gain 

some insight into Heron’s approach by looking at his proof for II.4.  

As already indicated, Euclid’s proof of II.4 is based on I.34, which establishes the 

equality of the two rectangles AG, GE. Heron’s proof is quite different. For one thing, 

he did not even draw the full square of Euclid’s diagram, but rather, as in the 

following diagram, only the line ba, cut at an arbitrary point g (p. 92): 

 

Figure 18: Heron’s diagram for Euclid’s Elements II.4 

The proposition states that the square on ab equals the sum of the two squares, one on 

ag and one on gb, together with twice the area contained by the lines ag, gb. He did 

not explicitly show any construction, but it is evident that Heron conceived this 

proposition, as well as the others in the book, as expressing properties of geometric 

figures. This same spirit is clearly reflected in the proof itself. His argument for II.4 

can be schematically rendered as follows:  

(c.1) By II.2:   Sq(ab) = R(ab,ag) + R(ab,bg).  

(c.2) But by II.3:    R(ab,ag) = R(bg,ag) + Sq(ag);  

(c.3) Also by II.3:  R(ab,bg) = R(bg,ag) + Sq(bg).  

(c.4) Hence:   Sq(ab) = Sq(ag) +  Sq(bg) + 2·R(bg,ag).  
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In al-Nayrīzī’s text, the numerical example is given via the following diagram:  

 

Figure 19: Al-Nayrīzī’s diagram for Euclid’s Elements II.4 

Al-Nayrīzī also gave the details of the calculation, namely, that the square on the 

entire length, 100, equals the sum 49 + 9 + 2·3·7.  

But as already mentioned, al-Nayrīzī’s own contribution went much further than just 

illustrating the propositions of Book II with numerical examples: he took the further 

step of incorporating into the arithmetical books of the Elements arithmetic versions 

of propositions II.1- II.4. These arithmetic versions appear as commentaries added to 

a result in Book IX (AN-IX.16) that, remarkably enough, does not appear in Euclid’s 

original version of the arithmetic sections of the Elements.
8
 The details of his proofs 

to these propositions deserve close attention.  

The first interesting point to notice in these proofs is that they are typical of those 

appearing in Euclid’s arithmetic proofs. In particular, in the diagrams lines serve to 

indicate the numbers involved in the proof, but they are not used to produce any 

relevant geometric constructions. Of particular importance is the fact that 

multiplication is never represented here as area formation. 

Al-Nayrīzī’s diagram for his version of II.1, as it appears in the corresponding 

commentary to AN-IX.16, is the following   (p. 204):  

                                                 
8
 As a matter of fact, AN-IX.16 is a generalization of Euclid’s IX.15. In Euclid’s IX.15 three numbers 

are added, whereas al-Nayrīzī adds an arbitrary number of numbers (“Si fuerint numeri quotlibet 

continue proportionales in sua proportione minimi, …”). Curtze cites the proposition in a footnote (p. 

204), without in any way mentioning the discrepancy with the Euclidean original. As we shall see 

below, Campanus followed al-Nayrīzī’s formulation.  
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Figure 20: Al-Nayrīzī’s diagram for the arithmetic version of Euclid’s Elements II.1 

The line hz represents the product of ab by gd, whereas kl represents the product 

of ab by ge and ml that of ab by ed. The proposition states that hz equals km. The 

proof proceeds simply by spelling out each multiplication as the number of units by 

which a number measures another. Thus, “gd measures (numerat) hz by as many 

units as there are in ab whereas ge measures kl by as many units as there are in 

ab and ed measures ml by as many units as there are in ab”. From here the 

conclusion is reached that the addition (conjunctio) gd measures km by as many 

units as there are in ab, and hence the number km equals the number hz. 

Translating back into “multiplication”, al-Nayrīzī concludes that the area that is 

obtained from ab and gd equals the addition of the two areas that are obtained 

from ab and ge and ab and ed. And this is what we wanted to prove.  

Thus we see that, while attempting to incorporate these results into the corpus of 

arithmetical knowledge displayed in the Elements, al-Nayrīzī nevertheless abode by 

the basic separation of realms. He did not import into the arithmetic books the kind of 

geometric reasoning with continuous magnitudes used by Euclid in Book II, but rather 

developed a proof that followed Euclid’s own constraints for dealing with discrete 

quantities. Recall my explanation above in relation to V.1-V.6, concerning the 

conception of addition not as a binary operation, but rather as a gathering together of 

multitudes of instances of a given magnitude. Al-Nayrīzī deals here with discrete 

magnitudes and his proof is based on implicitly rearranging, according to the need, 

the instances of the magnitudes that appear in the said multitudes. As we will see, 

such rearrangement are performed explicitly in the work of Campanus as the basis of 
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some of his arguments.  

Al-Nayrīzī also formulated arithmetical equivalents of II.2-II.3. While in his version 

of Book II, as I stressed above, he had relied as did Heron on II.1 for proving these 

two propositions, here he went along with Euclid in the sense that he did not rely on 

the arithmetic version of II.1, but rather rehearsed the (now arithmetic) argument 

introduced for the respective version of II.1. Likewise, he also proved the arithmetic 

version of II.4 by a repeated application of II.2 (pp. 205-207). Thus, al-Nayrīzī clearly 

wanted to stress the autonomous, purely arithmetic characters of these propositions 

when presented in his comments to IX.16.    

Also al-Nayrīzī’s comments to propositions V.1-V.2 are interesting for our discussion 

here. First, concerning V.1, he indicated a possible difficulty in the argument of the 

proof (pp. 169-170). In order to see what he had in mind, consider the accompanying 

diagram which is the following:  

 

Figure 21: Al-Nayrīzī’s diagram for Euclid’s Elements V.1 

Recall that in the argument of the proof, ba, dg represent equimutiples of e, z 

respectively, and it is required that the each of the latter be cut from each of the 

former, respectively. Now, in the simplest cases, this raises no difficulties. For 

example, if the two given magnitudes ab and gd are lines, he wrote, then, in order to 

do so, we can invoke Euclid’s I.3 (“Given two unequal straight lines, to cut off from 

the greater a straight line equal to the less”). In the case where the magnitudes are 

arcs, al-Nayrīzī invoked Book III as providing the necessary justification. Most likely 

he had in mind a combination of propositions such as the following two: 
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III.27: In equal circles angles standing on equal circumferences are equal to 

one another, whether they stand at the centres or at the circumferences.  

III.34: From a given circle to cut off a segment admitting an angle equal to a 

given rectilinear angle.  

Also for the case when the magnitudes are arcs al-Nayrīzī declared that no problem 

arises, but he did not explain why. It is also plausible that his implicit justification for 

this case might have been related, via arcs of circles, to the same two results of Book 

III, in conjunction with the following one:  

VI.33: In equal circles angles have the same ratio as the circumferences on 

which they stand, whether they stand at the centres or at the circumferences.  

But for the case when the magnitudes involved are bodies, al-Nayrīzī indicated that 

the necessary operation of subtraction becomes “impossible” (“… tunc illud erit 

impossibile.”). Nevertheless, he asserted, the existence of multiples is assumed in this 

case, only in order to imagine that if the number of times that e measures ab is two, 

then the number of times that z measures gd is also two, or if it is half of this then also 

z is half gd, and so on for any multiplicity whatsoever.  

Thus, al-Nayrīzī considered this proposition as embodying several different, but 

specifically geometric situations, each of which required its own kind of justification. 

In other words, he was not thinking of “magnitudes” as a completely general concept 

on which we can argue in abstract terms, without specific justification for each case. 

Properties of equimultiplicity, so it seems, were for him differently rooted in basic 

properties specific to each kind of magnitude that can be considered.   

His comments on V.2 are somewhat cryptic and we can at best conjecture what was 

that he had in mind. Al-Nayrīzī asserted that “there is nothing at all except the order 
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of the branches of knowledge, of which the first is arithmetic, which is about 

numbers, and after which comes geometry. The proposition therefore demonstrates 

the basic, necessary principles which we will discover in this theory” (p. 170).  In 

trying to understand what he had in mind here recall the original formulation of the 

proposition, which reads as follows: 

 

Figure 22: Al-Nayrīzī’s diagram for Euclid’s Elements V.2 

The argument reads as follows: 

Once we know that g measures ab according to the number of times that z 

measures ed then the times that g measures ab and that it measures bh equal 

the number of times that z measures de and z measures et. Hence, the 

enumeration of multiples ah equals the enumeration of multiples dt, and this is 

what we wanted to prove. 

As we just saw, in his treatment of V.1 al-Nayrīzī found it relevant to speak about the 

meaning of the proposition with respect to various kinds of geometrical magnitudes. 

Now in discussing V.2 he invoked the importance of “the order of the branches of 

knowledge” and then limited himself to a general argument presumably valid for all 

kinds of magnitudes. Perhaps he meant to say that it is not necessary to discuss the 

various cases separately because his argument covers “the basic, necessary principles 

that we will discover in this theory”. Admittedly, this conclusion is somewhat 

conjectural and hence inconclusive. Much less can we know how later readers 

interpreted it, or if they paid attention to this remark at all.   
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4.2. Abu Kāmil 

In Abu Kāmil’s treatise on algebra, we find an arithmetical distributivity-like law of 

multiplication over addition for numbers that is grounded on essentially geometric 

considerations. This way to handle a basic property of an arithmetical operation 

reflects a basic tension permeating the entire treatise that is, at the same time, 

illustrative of broader issues arising in the Islamic mathematical traditions. Such 

issues derive from the attempt to reconcile diverging conceptions found at the sources 

of these traditions. While the numbers handled in the arithmetical parts of the 

Elements were always positive integers, the practical traditions from which Islamic 

arithmetic arose were at ease, from very early on, with fractions and irrational roots. 

Al-Khwārizmī’s codification of the basic techniques for solving problems involving 

the square of an unknown quantity drew on Euclid-like geometrical arguments for 

obtaining their legitimation. Abu Kāmil attempted to provide a more systematic 

account of Al-Khwārizmī’s techniques while making more evident the Euclidean 

source of the arguments. But the gap between Euclid’s arithmetic and the more 

general views on numbers underlying Islamic mathematics could not be bridged 

simply by identifying numbers with Euclid’s magnitudes. For one thing, while the 

operations of multiplication, division, or root extraction are closed in the domain of 

numbers, in the realm of magnitudes they involve a change in dimension. Thus, 

representing arithmetical operations geometrically involved serious conceptual as well 

as technical limitations and challenges. These challenges are evidently present in Abu 

Kāmil’s handling of arithmetical rules, including those related with distributivity 

properties.
9
 

                                                 
9
 Alongside the historical context for Abu Kāmil’s book as described in [LC1, 655-661], and the 

secondary sources cited there, I refer the reader to (Oaks 2011) for further details on these issues.  
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An example of particular interest for us here appears in Abu Kāmil’s discussion of 

rules for multiplying expressions involving the unknown or its square. Results and 

methodological approaches taken from the arithmetic parts of the Elements are 

interestingly combined here with results and proofs originally meant to deal with 

continuous magnitudes, such as such as those of Book II. Thus, for instance, the case 

“How much is 10 and one thing times the thing”, or its parallel, “How much is 10 

minus one thing times the thing”. Retrospectively seen, these embody the symbolic 

expressions (10 + x)·x = 10x + x
2
, or (10 - x)·x = 10x - x

2
. Abu Kāmil’s proofs of these 

cases consist, essentially, in referring to a diagram where the situation is 

geometrically represented (Sesiano 1993, 342):  

 

Figure 23: Abu Kāmil’s diagram for solving a problem with squares of the unknown 

Here AB is taken to be 10 and BG to be the thing, while the rectangle AD is the 

product whose value we are looking for. The figure is so constructed that segments 

BE and GD are equal, while also GD and GB are equal. Hence BE equals GB, which 

is the thing. Accordingly, then, BD is the square of the thing. Hence the rectangle AD 

is ten things and a square (of the thing), as stated in the rule.    

Now, we saw above that in Euclid’s proof of II.1 the distributivity of rectangle-

formation for invisible figures derived from a geometric property (concatenation of 

rectangles) that is evident for visible figures. What we find here is a discussion of a 

rule of manipulation for the unknown quantity and its square (which are numbers). 

This arithmetic rule, however, is justified with the help of a geometrical argument. 

This justification, moreover, is embodied in a situation evidently similar to that of 
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Euclid’s II.1. The European readers of the Latin version of Abū Kāmil’s treatise 

became widely acquainted with this way of handling distributivity-like properties in 

the arithmetical context, that is, as a property that is conveniently backed by some 

kind of geometric justification. We shall find this approach repeated in many of the 

texts discussed below.  

 

5. Distributivity-like Results in the Latin Middle Ages 

The Latin medieval authors that I discuss in this section drew their views on Book II 

and on the other distributivity-like results found in Euclid’s Elements from a variety 

of sources. These include the various Latin versions of the Elements [LC1, 663-666], 

in the first place. They also included various Arabic and Hebrew texts that were 

translated and circulated in Latin Europe, such as Abraham bar Ḥiyya’s Liber 

Embadorum [LC1, 667-674]. Basic conceptions about numbers had already 

undergone, at this point, significant changes relative to those originally underlying 

Euclid’s work. For one thing, as already mentioned above, Islamic mathematics 

introduced and freely used fractions and even irrational squares in contexts where 

Euclidean propositions and methods were also invoked. The distributivity-like 

properties on which I focus here, appearing in the medieval texts discussed right 

below, were handled very often as part of conscious attempts to clarify the 

foundations of arithmetic and to provide, for this mathematical field of knowledge, 

the kind of axiomatic foundations that geometry had enjoyed for generations, at least 

since the time of the Elements. In many cases, discussions related with distributivity-

like properties played a central role in such attempts, and for this reason they are 

certainly worthy of close historical attention.   
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5.1. Liber Mahameleth 

Liber Mahameleth is a text on commercial arithmetic, presumably written in or near 

Toledo around 1143-1153 [LC1, 675-677]. It is of particular interest for our 

discussion here because its preliminary section is explicitly devoted to presenting 

what the author saw as the foundational rules of arithmetic. These rules are presented 

from an original perspective that combines arithmetic and geometric considerations, 

and that betrays the kinds of concerns faced by an author trying to come to terms with 

the actual source of their validity. 

The preliminary section of Liber Mahameleth comprises eighteen propositions: the 

first eight (LM-1 to LM-8)
10

 are arithmetic in contents and style, while the last ten 

(LM-9 to LM-18) are adaptations of results adopted from geometry. The former 

comprise several results taken directly from Abu Kāmil’s Algebra, including 

associativity of the product. The latter comprise results from Euclid’s Book II. 

Proposition LM-9, which is the equivalent of Euclid’s II.1, provides the basis for 

proving all the following ones.  

The author is aware that a reader with some knowledge of Euclid may object the order 

of the propositions and the reliance, for proving propositions that appear earlier in the 

                                                 
10

 In the critical edition of Vlasschaert (2012), the propositions are not numbered, but in the 

introductory text she provides algebraic renderings and numerates each corresponding formula. For 

ease of reference I am adding here a corresponding numeration for the propositions, with the initials 

LM, and I also refer to the corresponding page in the critical edition. A more recent, and in some 

senses more comprehensive, edition is that of Sesiano (2014). The latter had not been published when I 

completed [LC1]. Hence, in the interest of compatibility with my own previous article I will continue 

to refer here to the text as it appears in (Vlasschaert 2012). Notice that Sesiano also uses a somewhat 

different numbering of the propositions.  
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nature order of the Elements, on propositions that appear later on. Thus he wrote 

(Sesiano 2014, 597-598):
11

 

 

We deemed it appropriate to add next what Euclid stated in the second book, 

in order to explain with respect to numbers what he himself explained with 

respect to lines. It will be necessary for their proof to use certain propositions 

from the seventh book, for Euclid only spoke about numbers in the seventh 

book and the two following ones. For this reason Euclid should first be read 

and known thoroughly before embarking upon the present treatise on 

mahameleth. 

Being this the case, the way in which the proposition is proved here is completely 

original and worth of attention. In the first place, the accompanying diagram is 

different from those appearing in any other medieval text for a version of II.1. It looks 

as follows:  

 

Figure 24: Liber Mahameleth LM-9 

Like in Euclid’s arithmetic books, the lines labeled with letters represent numbers but, 

unlike in Euclid’s, these numbers can be fractions or even roots. This means that 

                                                 
11

 Sesiano comments in a footnote to this passage that, in spite of the warning, the only propositions on 

which are used in the following proofs are VII.17 and V.24. In p. 593, footnote 56, Sesiano explains 

that actually VII.17 and VII.18 are sometimes intercheangably referred to.  
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arguments in which the units are counted and possibly rearranged will not work 

smoothly as was the case with Euclid or even al-Nayrīzī. The proof combines ideas 

relating to proportions of both numbers and continuous magnitudes, and makes 

crucial use of V.24. As we saw above, this proposition expresses a distributivity-like 

law for proportions. But at the same time, the proof also relies on VII.18, which 

connects the operations of multiplication and ratio formation for numbers. If we allow 

ourselves here a symbolic rendering, for the sake of brevity, the property embodied in 

VII.18 would be the following: 

VII.18: b:c :: ab:ac.  

The details of the proof of LM-9 are as follows:  

In the figure above, two numbers a and bg are given, and bg is divided into parts 

bd, dh and hg. The proposition states that the product of a by bg equals the 

products of a by bd, a by dh and a by hg taken together. Further, q represents the 

product of a by bg, z the product of a by bd, k the product of a by dh, and t the 

product of a by hg. The proof can be rendered schematically with the symbolism of 

proportions (not used in the text, of course). It goes as follows: 

(d.1) a·bg = q; a·bd = z; a·dh = k; a·hg = t  

(d.2) By Euclid VII.18: z:q ∷ bd:bg; k:q ∷ dh:bg 

(d.3) By Euclid V.24:
12 z +k : q ∷ bh:bg  

(d.4) By Euclid VII.18: t:q ∷ bd:bg 

(d.5)  By Euclid V.24: z +k + t :q  ∷  bd +dh +hg :bg  

(d.6) But bd +dh +hg  = bg, hence z +k + t  = q              Q.E.D. 

                                                 
12

 In the Vlasschaert edition, p. 26, there is no direct reference to V.24, but just “sicut euclides dixit in 

quinto”. (Sesiano  2014, 597-598) makes clear that the references are to VII.18 and V.24, as I indicate 

here.  
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Two important points should be stressed about this proof. Euclid’s proof of VII.18 

specifically depends on counting units (via VII.15). The author, however, applied it 

here to segments, and he did so without any further comment. The segments represent 

numbers, that’s true, but as already stated the numbers here are not only integers and 

hence an argument based on counting units is problematic. Secondly, by relying on 

V.24, the author was actually grounding an arithmetic property on a property derived 

from the Eudoxian theory of proportions. Moreover, he did so via a result of Book II. 

On the face of it, once the author decided to rely on Book V, he might have followed 

the more straightforward approach of invoking V.1 (or one might also think of VII.5-

6). Indeed, recall that V.1 embodies a law of distributivity of the product over the 

addition of several (not just two) magnitudes. But on closer look, multiplication in 

V.1 could be retrospectively seen now as concerning repeated addition of a magnitude 

to itself a number of times, whereas Euclid’s II.1 (and hence also LM-9) is not meant 

as referring to that kind of multiplication. The “numbers” referred to in LM-9 are 

multiplied by another “number” rather than repeatedly added to themselves, as in V.1. 

Also in this regard, then, the mixture of domains and approaches is quite unusual. It 

may well be the case that the author realized that the intended meaning of “multiple”, 

when multiplying by segment a, required repeated reliance on V.24 rather than a 

direct application of V.1. But then again, this is somewhat roundabout since also 

VII.18 is applied and since the basic intention was to prove a property of numbers.  

Upon examining the entire preliminary section more closely, one comes across an 

even more complicated picture, given that two special cases of distributivity-like 

properties are already proved in the book previous to LM-9. This is the case with the 

purely arithmetic propositions LM-6 and LM-7, which deal with the relationship 

between division and, respectively, subtraction and addition. Also the details of these 
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proofs are quite interesting for reaching a clearer insight into the rationale of this 

preliminary section. The first four propositions in the section comprise statements and 

proofs of elementary arithmetic properties such as associativity of multiplication or 

division of three or four numbers (with strong references to Abū Kāmil). The next 

proposition, LM-5 (pp. 20-22), is needed for proving LM-6. Its enunciation is the 

following:  

LM-5: If six numbers are given, such that the first is to the second as the third 

is to the fourth, and the fifth is to the second as the sixth is to the fourth, then 

that by which the first supersedes the fifth or is exceeded by the fifth is to the 

second as that by which the third supersedes the sixth or is exceeded by the 

sixth. 

This is a modified version of V.24, when subtraction is involved instead of addition. 

As already mentioned, Robert Simson remarked that Euclid’s proof of V.24 can be 

easily modified to obtain the result stated here in LM-5, namely by relying on V.17 

rather than on V.18 (Simson 1804, 119). Indeed, this is precisely what the author of 

Liber Mahameleth did in his proof. Let us consider the details.  

The six given numbers are ab, g, dh, z, ak, dt, and they define three proportions 

ab:g :: dh:z, and ak:g :: dt:z.   

 

Figure 25: Liber Mahameleth LM-5 

The proposition then states that kb:g :: th:z, and the proof can schematically be 

summarized in the following steps:  
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(e.1) from ak:g :: dt:z we obtain g:ak :: z:dt  

(e.2) Now, from  ab:g :: dh:z and g:ak :: z:dt   it follows that ab:ak :: dh:dt  

(e.3) From ab:ak :: dh:dt it follows that bk:ak :: ht:dt  

(e.4) Finally since ak:g :: dt:z and bk:ak :: ht:dt it follows that bk:g :: ht:z   

QED 

Some minor remarks on the proof are in order: 

 The author justified step (e.1) by invoking Euclid’s V.16, but from the latter 

proposition and from ak:g :: dt:z what we obtain is ak:dt :: g:z. 

 Steps (e.2) and (e.4) rely on V.22, which is not mentioned by the author. 

 The crucial step is (e.3), which, as Simson said, depends on V.17. The author 

wrote here “Secundum proportionalitatem”. 

 Notice that both V.17 and V.22 are proved in Euclid directly from the 

Eudoxean definition of proportion. There are no parallels to these two 

propositions in Book VII. Thus, also in this sense the author is relying here 

directly on Book V for his foundational result. 

 Whereas in the enunciation, the possibility “or is exceeded” (by the 

fifth/sixth) is mentioned, there is no reference to that in the proof.  

The proof of LM-6 (pp.22-23), which handles subtraction rather than addition, is a 

direct application of LM-5.  

Referring once again to the above diagram, two numbers are given, ab and ak, kb 

being their difference. When divided by g, they yield, respectively, dh and dt, and 

th is their difference. The proposition thus states that if the difference kb is 

divided by g, the result is th, the difference of the divisions.
13

 The argument of the 

                                                 
13

 On p.23 of the Vlasschaert critical edition there is an additional diagram, 
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proof is simple: from ab/g = dh it follows that dh∙g =a and hence g:ab ∷ 1:dh. 

Likewise, one can deduce g:ak ∷ 1:dt. Here one can apply LM-5, from whence g:kb 

∷ 1:th, and from here, the desired results follows easily.   

The author indicated that the following proposition is similar, but now for the case of 

addition (rather than subtraction as in LM-6). Therefore one needs a rule that is 

similar to LM-5, but applies to addition. But such a rule, he stated, had been already 

proved by Euclid and hence it would not be necessary to prove it in the treatise again. 

The reference is, of course, to V.24. Thus, LM-7 is formulated as follows (p. 24): 

LM-7: When any two numbers are divided by another number, then the 

outcomes of both divisions taken together equal the result of dividing by the 

same divisor both numbers taken together.  

The diagram is the following: 

 

Figure 26: Liber Mahameleth LM-7 

And the proposition states that if we divide ab by g and the result is dh, and if we 

divide bk by g and the result is ht, then, the result of diving ak by g is dt. The proof is 

similar to that of LM-6, but in its crucial step it relies directly on Euclid’s V.24. 

                                                                                                                                            

   

It does not seem, however, to fit the argument presented in the proof.  
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Liber Mahameleth comprises many results that are illustrative of the challenges faced 

by medieval authors trying to come to terms with the very idea of providing 

foundations for arithmetic. Distributivity-like results are among such results.  Of 

particular interest is the way in which an underlying tension manifests itself, arising 

from the attempt to understand the basic properties of numbers without thereby giving 

away the traditional, Euclidean centrality of geometry as the field that is better 

understood and axiomatically founded.  

 

5.2. Fibonacci 

Yet another illuminating perspective on the interest in distributivity-like properties is 

found in Fibonacci’s De Practica Geometriae, composed in 1220 or 1221.
14

 As in the 

more famous Liber Abaci, also in this treatise, Fibonacci used propositions from 

Euclid’s Book II for solving problems involving squares of unknowns. But unlike in 

Liber Abaci, there is an entire section in the Practica where Fibonacci directly cited 

twelve propositions from Euclid’s Elements, the first nine of them being versions of 

propositions in Book II (II.8 is absent). He introduced original arguments for some of 

the propositions. For details see  [LC1, 677-684].  My point here is that in all of these 

propositions, the kind of distributivity afforded by II.1 (or its direct derivatives, such 

as II.2-II.3) plays a central role. Fibonacci presented these results in two different 

versions. First, an arithmetic version that applies to “any number” and is proved by 

counting units. Secondly, a more geometric version in which “a straight line” is 

divided into segments as in II.1. For the second kind of statements, he typically 

provided no proof. The proofs given by Fibonacci deserve some further analysis.  

                                                 
14

 See (Moyon 2012), for a broader discussion of the genre of Practica Geometriae and its relation with 

the early development of algebra.  
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The arithmetic version of II.1 appears in Fibonacci’s proposition PG-31. Here the 

number ab is divided into ag, gd, and db, and Fibonacci claims that the products of 

ag by ab together with gd by ab and db by ab equal the product of ab by ab 

(Hughes 2008, 26-27).  

 

Figure 27: Fibonacci’s diagram for the arithmetic version of Euclid’s Elements II.1 

The reason adduced is, simply, that “the number of units in part ag with those in ad 

will produce the product of ag by [ad].”
15

 And the same is said for the other two 

pairs. Hence, Fibonacci concludes, “because there are as many units in the number 

ab, namely in the parts ag, gd, db, so many are united in the number ab from the 

multiplication of ag, gd and db, by ab.” And on the other hand “as many units as 

there are in ab, so many arise from the multiplication of ab by itself”. His 

argument, then, is similar to that found in Euclid’s VII.5. After concluding that both 

products are equal, as required, Fibonacci also gave a numerical example.  

In PG-32, Fibonacci divides a “straight line” into many parts and multiplies each 

part by “another line”, and then states that “the sum of all the products equals the 

product of the whole divided line by the other line”. Here no proof is provided, but 

just a numerical example of 2,3, and 5 multiplied by 12. PG-33 is version of II.3 

and PG-34 is of II.4. In both cases the enunciation is for “straight lines”, rather 

than for numbers, and the proof is based on the previously proved results on 

                                                 
15

 I am relying here on Hughes’ translation and I have no direct access to the original. In this specific 

part of the proof, ab and ad are interchanged in two places, and I am assuming that this is a typo. 

Likewise, I assume that Fibonacci’s conclusion that follows immediately, and which sounds to me as a 

somewhat weird type of mathematical reasoning, is indeed what the original says (or that at least it is 

close enough to it).  
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distributivity. In both cases Fibonacci added that the result “can be shown with 

numbers”.  

 

Fibonacci’s statements of the propositions allowed considering them simultaneously 

as related to both geometry and arithmetic, and he could move quite freely from one 

realm to the next when necessary. Some of the geometric results he relied on he took 

for granted, some he just illustrated with numerical examples. He also introduced new 

proofs for the Euclidean results in which he tried an innovative, proto-algebraic 

reasoning as part of the argument. This flexible view of the relationship between 

geometry and arithmetic certainly was conveyed, at least at the implicit level, together 

with the more concrete results and techniques explicitly taught in his treatises. Given 

the rather wide audiences that these treatises reached over the next centuries, his 

approach no doubt played a significant role in eventually weakening the strict 

separations of realms typical of Euclid’s practice in the Elements. 

 

5.3. Jordanus Nemorarius, Campanus de Novara 

The two most prominent medieval authors who were involved with questions 

pertaining to the foundations of arithmetic were Jordanus Nemorarius and Campanus 

de Novara. Both were active in the 13
th

 century. Because of the originality of their 

ideas and the influence they exerted on mathematicians of later periods of time, they 

deserve a detailed, separate discussion concerning the ways in which distributivity-

like properties appear in their works.
16

 For the sake of completeness in the 

                                                 
16

 See (Corry 2016) for such a detailed discussion.  
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presentation here, I will summarize now some of the most important points related to 

this issue.     

In his treatise Arithmetica, Jordanus sought to achieve for arithmetic what Euclid had 

done for geometry, in all what concerns the derivation of the body of arithmetic from 

definitions, postulates, and common notions. Moreover, he explicitly avoided reliance 

on geometrical concepts or results of any kind when putting forward his project [LC1, 

684-689]. A central role was accorded in this treatise to five distributivity-like results, 

respectively parallel to Euclid’s VII.5, VII.6, V.1, and (in two different versions) II.1. 

The first three of these are, like their Euclidean counterparts, statements of the type “if 

… then” (see above). The last two embody a property similar to left- and right-

distributivity of the product over addition for numbers. Interestingly, in Jordanus’ 

treatise we find no proposition that is parallel to Euclid’s V.2, following the one that 

is parallel to V.1.  

In order to convey the overall feeling of Jordanus’ style in handling these 

propositions, it seems convenient to focus on the pair of propositions that is parallel to 

Euclid’s II.1. These are the following:
 17 

 

A-I.9: That which is obtained by multiplying any number by as many as one 

pleases equals that which is obtained by multiplying the same [number] by 

their combination [i.e., their sum]. 

A-I.10: That which is obtained by multiplying as many numbers as one 

pleases by some number equals that which is obtained by multiplying their 

combination [i.e., their sum] by the number. 

                                                 
17

 For easiness of reference I use here a numeration of the propositions which does not appear in the 

original. 
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If we allow ourselves a symbolic rendering of the two for the purposes of illustration 

we obtain the following:  

A-I.9:    a·b + a·c + a·d + …  =    a·(b+c+d+…), 

A-I.10:  b·a + c·a + d·a + …  =   (b+c+d+ …)·a. 

Notice that whereas A-I.10 embodies a legitimate arithmetic operation (a sum of 

numbers being multiplied by another number) a parallel proposition stated in the 

purely geometrical context of Euclid’s Book II would make little sense. Indeed, such 

a parallel formulation would amount to something similar to the following:  

II.1: If there are two straight lines, and one of them is cut into any number of 

segments whatever, then the rectangle contained by the two straight lines equals 

the sum of the rectangles contained by each of the segments and the uncut line. 

It would not be clear, in the first place, what is the sum of rectangles that such a 

formulation would involve, given that in the context of Book II the sums of rectangles 

are concatenations, one to the right of the previous one. Moreover, to the extent that 

one can make sense of this formulation, it does not seem to add anything of real 

content to the original II.1.  

The arithmetic case is more interesting, and apparently more meaningful, but at the 

same time, Jordanus decision to include A-I.10 is quite remarkable given that in A-I.8 

he had proved the commutativity of the product in general:  

A-I.8: If two numbers are multiplied alternately, the same number is obtained 

in both cases. 



Corry  Euclid – Distributivity 

- 55   -  

 

Why did Jordanus nevertheless prove A-I.10, then, if it follows from applying A-I.8 

to A-I.9? In order to answer this question one would have to look at the details of the 

proofs of all these propositions (as explained, e.g., in (Corry 2016)). The details 

indicate that propositions A-I.9-A-I.10 actually represent not just two different 

versions of the same situation, but actually two propositions that were truly different 

for Jordanus: a “number” is multiplied by “as many numbers as one pleases”, and “as 

many numbers as one pleases” are multiplied by “a number”.  

In addition to these five propositions, some of the subsequent ones in the preliminary 

section of the Arithmetica embody additional cases of distributivity-like properties of 

various kinds. These are, as a matter of fact, versions of II.1-II.3, that generalize or 

provide particular cases of the previous ones, and that are proved on while relying on 

those previous ones, particularly on A-I.9. Thus, for instance, the following three (of 

which I just give the symbolic rendering): 

A-I.11:    (a + b + c +…)·(p + q + r +…) =  

a·p+ a·q+ a·r+ … + b·p+ b·q+ a·r+ …  + c·p+ c·q+ c·r+ … 

A-I.13: If  a = b + c + d + …     then   a·a = a·b + a·c + a·d + …    

A-I.14: If    a = b + c                  then   a·b = b·b + b·c  

  

Jordanus’ conscious attempt to provide a rigorous presentation of arithmetic, not 

found in previous treatises, led him to make a clear distinction between repeated 

addition of numbers, and multiplication of two numbers, but at the same time to 

present these two ideas as closely related. A main focus of attention in pursuing that 

distinction appears in relation with distributivity-like results, and a possible reason for 

this is that in those treatises where he learnt his arithmetic, he did not find a 

satisfactory treatment of such results.  
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Campanus de Novara published a Latin version of the Elements around 1260. His 

treatment of Book II does not differ from the standard, Euclidean one found in other 

medieval versions of the treatise [LC1, 689-692]. His treatment of distributivity-like 

results in the framework of Books V and VII, however, is highly original.  In the 

preliminary section to Book V, Campanus introduced lengthy additions and comments. 

He did not hesitate to explain to his readers what, in his view, was in Euclid’s mind 

when writing this or that definition. Campanus also commented on the highly difficult 

character of the theory of proportions as presented in Book V, while stressing explicitly 

that these difficulties arise mainly from the need to deal, within one and the same 

framework, with irrational as well as with rational ratios (Busard 2005, 173-175). As I 

already explained in [LC1], Campanus devoted some efforts to discuss, echoing 

Jordanus, the significance of Euclid’s double treatment of proportions, once for 

continuous magnitudes and once for numbers.
18

  

In order to help the reader in following and understanding the arguments of the proofs 

in Book V, Campanus associated numbers to the segments that appear in the diagrams 

(he did the same in many diagrams of Books VII-IX as well). Jordanus had followed a 

similar approach, and it was quite natural that he did so as part of his treatment of 

results in the arithmetical books. It seems much less natural, however, to find this 

done in the case of Campanus, given his stress on the essential difference between 

handling proportions that involve continuous magnitudes and those that are purely 

arithmetic. Let us see how this appears, for instance, in the diagram accompanying 

V.1, which is the following (p. 177): 

                                                 
18

 Campanus’ discussion of proportions also raises some additional issues concerning both textual and 

conceptual difficulties, but they are beyond the scope of this article. See (Rommevaux 2007). 
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Figure 28: Campanus’ diagram for Euclid’s Elements V.1 

Here the three magnitudes a,b,c are said to be equimultiples of d,e,f respectively, and 

the proposition states that a + b + c is the same equimultiple of d + e + f as a is of d. 

The numbers appearing in the diagram are not even mentioned in the specification or 

in the proof, but one can imagine that they may have helped the reader follow the 

argument.   

Also in the introductory section to Book VII Campanus devoted focused attention to 

distributivity-like properties. Thus, one of his common notions, which is fundamental 

to the attempted systematic foundation of arithmetic, states that if the unit is 

multiplied by any number or if a number is multiplied by the unit, then the result is 

the number itself (Busard 2005, 231). Campanus added three additional ones, which I 

ask to include here under the category of “distributivity-like”. They are the following: 

 Any number that measures two numbers, measures also their sum. 

 Any number that measures some number, measures also any number measured 

by it. 

 Any number that measures the whole and the deducted, measures also the 

remainder.   

Intrinsically related with the attempt to provide an axiomatic foundation for arithmetic 

is the idea of the autonomy of such a body of knowledge vis-à-vis the other parts of 

mathematics presented in the Elements. Campanus consistently stressed this issue 

throughout the arithmetic books, and in particular he stressed the autonomy of proofs 

in Book VII vis-à-vis those of Book V. As I already explained in [LC1], Campanus 



Corry  Euclid – Distributivity 

- 58   -  

 

explained that the “propria principia” of the two books are different and, hence, 

corresponding propositions should be proved separately, and based on those specific 

principles alone in each case. In relation with the proof of VII.5, for instance, we find 

the following statement (p. 235): 

Euclid wanted that the arithmetical books would not have to rely on the 

previous ones, but rather that they would stand by themselves, and results that 

he proved in the fifth books for quantities in general he proved here for 

numbers in this fifth of the seventh.  

When examining the proofs in some detail, however, we notice that in some cases this 

autonomy did not go beyond repeating, while fully rewording for numbers, an 

argument already presented in Book V.
19

     

The most important point to mention here in relation with Campanus’ version of the 

Elements concerns a collection of fifteen commentaries added after the proof of 

IX.16. As already explained in [LC1]
20

, these commentaries comprise, among other 

things, arithmetic versions of propositions from Book II that embody interesting 

distributivity-like properties. I also mentioned above an interesting peculiarity of 

Euclid’s proof of IX.15, namely, that it transgressed the self-imposed rules of 

separation, and used arithmetic versions of II.3-II.4, without further comment. Al-

Nayrīzī in his own commentary, in turn, formulated IX.16 as a generalized version of 

IX.15, and added in relation to it his own arithmetic versions of II.1-II.4. Now 

Campanus, following on al-Nayrīzī’s footsteps, also added here his own 

commentaries.  

                                                 
19

  In other Latin versions of the Elements, instead of such a repetition, often there is just a direct 

reference to a corresponding proposition in Book V. See Busard 2005, 560. 

20
 See also footnote Error! Bookmark not defined. above.  
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A reader of Campanus who was also acquainted with Jordanus’ Arithmetica (if there 

was any) would have easily recognized the close relationship (sometimes verbatim 

repetition) of Campanus’ comments and Jordanus’ basic rules of arithmetic discussed 

above. Book VII opened by rehearsing Jordanus’ attempt to providing an axiomatic 

foundation, yet Campanus was also using the opportunity to include those elementary 

propositions that Jordanus had developed in the first chapter of his book. But as with 

Book VII, some of the technical changes that Campanus introduced in his 

presentation lead to some noteworthy differences. Thus, for example, Campanus’ first 

two comments state two symmetric, distributivity-like rules involving products and 

additions. Their enunciations are parallel to, but not identical with, Jordanus’ A-I.9 

and A-I.10. This is how they appear in the text: 

C-IX.9-1: That which is made by multiplying a number by as many as we 

wish equals that which is made by multiplying it by them. 

C-IX.9-2: That which is made of as many numbers as you wish in one, equals 

that which is made by their sum on it. 

Campanus’ proof of the first one is based on directly applying VII.5. For the proof of 

the second one he applied to the first the commutativity of the product, a property that 

appears in Campanus VII.17 (or Euclid’s VII.16).  

Campanus stressed in relation with C-IX.9-1, that “the first of the second” 

(i.e.,Euclid’s II.1) states the same thing but for lines. A similar statement appears in 

all the following commentaries, 4 to 12, with relation to each of the propositions II.2-

II.10 respectively. The first three of these correspond to the distributivity-like 

properties II.2-II.4, and they are proved by direct application of the first two rules.     
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The important point to notice concerning these commentaries is that for the sake of 

their proof, Jordanus had had to start with a distributivity-like property for 

multiplicities (A-I.6). This provided the basis for proving other statements for 

arithmetic that are truly parallel to those of geometry, in the sense that they refer to a 

multiplication of number by numbers. Campanus, in turn, could base his proof 

directly on VII.5, which already handled the distributivity-like property of the 

multiplicities.  

Campanus’s version of the Elements had a decisive influence on the way that the 

treatise was read and understood over the following generations, particularly in 

relation with the issue of the relationship between arithmetic and geometry. This is of 

course also the case concerning distributivity-like properties. Of particular importance 

in this regard is the addition of purely arithmetic versions to Book IX. Readers of the 

Campanus version, or of any other work derived from it, would now have good 

grounds – and by all means better grounds than those of a reader of any previous 

treatise – for seeing these properties as inherently arising within the purely arithmetic 

realm, without any need for additional support coming from geometric considerations.   

 

 

6. An Example from Hebrew Mathematics: Gersonides  

In the introduction to Sefer Maaseh Hoshev, dating from 1321, Gersonides told to his 

readers that he would assume a thorough knowledge of the arithmetical books of the 

Elements, and that he would not prove in his own text any of the results appearing in 

those books. Among the most basic results that he did prove there are some fully 

arithmetic versions of propositions from Book II, and specifically those embodying 
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distributivity-like properties. The proofs do not contain any new idea, but I think that 

it is interesting to take a closer look at the way in which they are presented here as 

purely arithmetic results with no trace of geometric origins or content. This can 

certainly be taken to represent the manner in which these kinds of results were 

already understood by the early fourteenth century. This is most clearly seen in 

Gersonides’ version of Euclid’s II.1 (MH-I.2), which reads as follows:
21

 

MH-I.2: When two numbers are given and one of them is divided into as many 

parts as we wish, the area of one of the numbers by the other equals the sum of the 

areas of each part of the one multiplied by the other.  

The diagram is as follows (for convenience I use Latin letters instead of the Hebrew 

ones appearing in the original): 

 

Figure 29: Gersonides’ Maaseh Hoshev  I.1 

And the text of the proof is the following:  

For let the numbers AB and C be given, and let the number AB be divided into 

parts, AE, ED, DB. I say that the area of AB on C equals the area of AE on C and 

the area of ED on C and the area of DB on C taken together. Proof: the area of AE 

on C contains the number of units in AE as many times as C, the area of ED on C 

contains the number of units in ED as many times as C, and the area of DB on C 

contains the number of units in DB as many times as C. Therefore, all of them 

                                                 
21

 Gersonides consistently uses the term “area” (שטח) to indicate products of numbers. But other than 

this, there is no hint of any kind of geometric thought involved here. All quotations are taken from 

(Lange 1909).   
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taken together contain the number of units of AE, ED, DB, taken together as many 

times as C. But the number of units of AE, ED, DB, taken together equals the 

number of units in AB.  

The diagram is interesting because, on the face of it, it is similar to that of Heron (as 

well as others we saw above), but unlike with Heron, it actually accompanies here an 

arithmetic kind of proof based on mere counting of units. Gersonides speaks here of, 

for instance, “the area of AB on C”, and as in Heron’s proof this is not represented in 

the diagram. Unlike with Heron, the result (even though it is called “area”) is yet 

another number, but it is not represented by another line in the diagram as was usually 

the convention for arithmetic-type proofs, where all numbers as well as all products 

of numbers mentioned in the proof appear as lines in the diagram.  

The next two propositions are just extension of MH-I.2. Thus, MH-I.3 is similar to 

Jordanus’ A-I.11, whereas MH-I.4 is parallel to Euclid’s II.2: 

MH-I.3: When two numbers are given and each of them is divided into as many 

parts as we wish, the area of one of the numbers by the other equals the sum of the 

areas of each part of the one multiplied by each and every part of the other number.  

MH-I.4: If any given number is divided into two numbers, the area of the number 

by any of its parts equals the area of one part by the other, together with the square 

on the part.  

Both are proved by direct application of MH-I.2, and they are used to prove some of 

the new propositions that Gersonides proves in the book. 

We thus see that, as with any other issue addressed in Sefer Maaseh Hoshev, 

Gersonides’ treatment of distributivity-like properties was consistently arithmetic 
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throughout. This was perhaps representative of the way in which most of his 

contemporaries had come to conceive of the entire issue by this time.    

 

7. Concluding Remarks 

In concluding this article I can refer back to my final comments in [LC1]. The next 

historical stage in considering the history of presentations of distributivity-like results 

within the Euclidean tradition was already within the world of the printed text, which 

was inaugurated with the 1482 Ratdolt edition and later on consolidated with the 

Commandino edition of 1572. These printed versions differed in important senses 

from the medieval ones, among other things because of the strong influence of the 

Campanus version. The changing relationships between geometry and arithmetic and 

the vigorous trends of symbolic algebraic techniques that began to attract increased 

attention opened the way to additional perspectives on the treatment of more general 

ideas of distributivity and on their place in the overall economy of mathematical 

knowledge. These new perspectives are worth of further, detailed attention but of 

course they cannot be pursued here and I leave them for a future opportunity.  
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